
NASA Contractor R e p % 178282
6 ,

ICASE REPORT NO. 87-7

ICASE
PROBLEM SIZE, PARALLEL ARCHITECTURE, AND OPTIMAL SPEEDUP

David M. Nicol

Frank H. Willard

(bASA-Cf i - 178282) EROELEH SIZE, FABALLEL N8 7-2 24 4 4
A E C H I ' I E C I U R E ANZ; C P I I B A L SPEELU€ F i n a l
EeFort (N A S A) I1 p Evai l : h l I 5 HC
AOJ/WE A01 cscz 128 U n c l a s

63/64 0 0 7 2 1 7 0

Contract No. NASI-18107

April 1987

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universit ies Space Research Association

NationalAeronauticsand
Space Administration

Hampton, Virginia 23665
C n 0 k y - m

Problem Size, Parallel Architecture, and Optimal Speedup

David M. Nkol and Frank H. Willard

Inatitute for Computer Applications in Science and Engineering
and

The College of William and Matv

ABSTRACT

The communication and synchronization overhead inherent in parallel processing can lead to
situations where adding procetmra to the solution method actually increases execution time.
Problem type, problem size, and architecture type all affect the optimal number of processors to
employ. In this paper we examine the numerical solution of an elliptic partial differential equa-
tion in order to study the relationship between problem size and architecture. The equation’s
domain is discretized into n2 grid points which are divided into partitions and mapped onto the
individual processor memories. We analytically quantify the relationships between grid size,
stencil type, partitioning strategy, processor execution time, and communication network type.
In doing so, we determine the optimal number of processors to assign to the solution (and hence
the optimal speedup), and identify (1) the smallest grid size which fully benefits from using all
available processors, (2) the leverage on performance given by increasing processor speed or com-
munication network speed, (3) the suitability of various architectures for large numerical prob-
lems.

This research WM supported by the National Aeronautics and Space Administration under NASA
Contract Number NAS1-18107 while the author WM in residence at ICASE, NASA Langley Research
Center, Hampton, VA 23665.

i

1. Introduction

A numerical solution to an elliptic partial differential equation (PDE) is usually constructed by

modeling the continuous domain of the equation’s variables with a grid of discrete points. The partial

derivatives are approximated using some differencing scheme, and a linear set of equations is con-

structed whose unknowns are the values of the solution function at each of the grid points. During an

iterative solution of these equations (e.g. point Jacobi) the value at a point is approximated by a func-

tion of values at nearby points. The amount of computational work associated with updating an interior

grid point is the same throughout the grid. Furthermore, during a single iteration grid points can be

updated in parallel. This high degree of regularity and potential parallelism has made the solution of

PDEs a very attractive problem area for the application of parallel processing.

An elliptic PDE problem may be solved in parallel by decomposing the grid into partitions, and

mapping partitions to processors. During an iteration a processor updates its grid points, and then

exchanges with other processors information necessary to compute the next iteration. As pointed out in

[12], a large number of factors affect the performance of the resulting parallel computation: discretiza-

tion stencil, partition shape, and parallel architccture. The analysis in [12] quantifies these relationships

for a wide variety of stencils, shapes, and architectures. Their work throughout assumes that all pro-

cessors in a parallel system are employed. This papcr uses their framework to determine the largest

possible speedup for a given problem, and to consider the behavior of that optimal speedup as a func-

tion of problem size when the number of available processors is not limited. These issues are important

when we consider that users of large scicntific codes will always want to solve a larger problem than

the current technology suppons. By focusing on the best possible speedup we are better able to access

the suitability of various architectures for scaling up to larger problems, and the effects that various

problem parameters and architecture parameters have on that suitability.

-2-

We will consider both strip and square partitions; although it is well known that squares have a

higher computation to communication ratio, situations exist where the use of strips yields better perfor-

mance than squares [131. Other authors have employed strips [7] when the number of available pmes-

son is not a power of 4 (to avoid this last problem, we show that "nearly square" partitions perform

within a few percentage points of true squares).

It is a folk theorem among the parallel scientific processing community that good speedup can be

achieved simply by increasing the size of the problem. In fact, our analysis shows that this is indeed

true for several different types of architectures. provided that the maximal number of processors i s

fixed. However, by allowing the number of processors (and supporting communication network) to

grow along with the problem size, it becomes clear that some architectures are better suited for large

problems than others. Architectures with hypercube or grid communication networks are shown to

give linear optimal speedup in the grid size n2. while bus-oriented networks are shown to give optimal

speedup which increases at best in the cube root of n2. The effect of the relationship between fixed

communication overhead costs and bus bandwidth is shown to be important. We show that banyan

type switching networks give optimal speedup which is O(n*/log(n)). From these results it is clear that

bus networks are unsuited for large numerical problems of the type we consider. While hypercubes

give better asymptotic optimal speedup than banyan networks, the true difference for grid sizes used in

practice will not depend on the banyan network's log factor, but on the relative speeds of the commun-

ication networks.

2. Previous Work

Partition geometry plays a key role in determining communication costs, consequently much of

the literature related to domain decomposition concerns the partition's geometric shape. Strips,

squares, triangles, and hexagons have been considered in [4,12,16] on both message-passing and shared

memory architectures. Reed. Adams and Patrick [12] have done a careful analysis of the relationships

-3-

between discretization stencils, partition shape, parallel architecture, and data structure management.

Their model determines which stencil/partition/architectures trios are best suited for each other. We will

introduce their model in the main partion of the paper. Neither the analysis in [12] nor other work con-

ceming partition shapes has explicitly focused on optimizing the number of processors used, or on the

behavior of optimal speedup as the problem size increases.

An analytic study of a conjugate gradient algorithm on the Finite Element Machine (FEM) is

found in [11. Their approach to modeling the computation is similar to ours, but is focused entirely on

the FEM. The difference between the algorithm they study and the class of algorithms we study led to

different conclusions concerning asymptotic performancc.

Other related work uses a more abstract model of a parallel computation. In [6], Indurkya, Stone,

and Cheng consider the module assignment problem under the assumptions of random module execu-

tion times and random communication patterns. They explicitly set out to determine the optimal

number of processors to use. Convenient approximations were made to make the overall execution time

more tractable; some of these approximations werc removed by Nicol in [9], where it is shown that

Indurkya’s conclusions are basically sound despite the approximations (all of Indurkya’s conclusions

hold rigorously if module execution times are constant). The cost function studied in that work was

the sum of execution time with the expected communication ovehead. Their somewhat surprising con-

clusion is that the optimal assignment of modules to processor is extremal: either all modules are

assigned to one processor, or the modules are distributed as evenly as possible across all available pro-

cessors.

The cost model studied by Indurkya et al. and Nicol fails to capture the potential overlap of com-

munication and computation in some architectures. Stone [15] also realized this, and gives a thorough

analysis of a number of simple cost and communication models for the module assignment problem.

Several of these models allow situations where adding processors increases execution time, so that the

-4-

optimal assignment need not be extremal. For computations captured by these models, finding the

optimal number of processors becomes an important issue. Stone uses a parallel solution of the Poisson

equation to illustrate the relationship of these models to a real problem. His discussion does not treat

the relative merits of partition geometries and stencils, although he does consider partitioning domain

rows into pieces. A similar abstract view of this problem is given by Cvetanovic [3]. In contrast, our

goal in this paper is to show how to optimize the size of a given partition shape for a given PDE on a

given architecture. We then use the optimal size to characterize the suitability of the architecture for

large numerical problems.

3. Model Description

A square physical domain is discretized into an nxn grid of points. and constant boundary values

are assumed. Depending on the algorithm used, the value at a grid point uii is updated according to a

discretization stencil. For example, figure 1 shows a 5-point stencil and a higher order 9-point stencil

Ui-1 j
a

a a m

I
Ui+l j

a

a 0 a

a 0 0

c

-5-

.
.

for the Laplace equation, solved using point Jacobi iteration. The equations clearly show that the sten-

cil has a direct impact on the amount of computation performed. A grid partitioned into squares is

shown in figure 2. From the equations in figure 1, we see that a grid point on the paxtition boundary of

one sqm needs the values of one or more grid points in adjacent squares. Consequently the chosen

stencil also affects the amount of communication. Since every boundary point must be communicated,

the perimeter of a partition's shajx affects communication volume. For example, a rectangular strip

with m points has 2(t + n) boundary points, while a square partition with r.n points has 4 G points;

2(r + n) 1 4 6 . Furthermore, some stencils require the communication of more than just one perime-

ter boundary; for example, see figure 3. Partitions are categorized in [I21 with respect to a given sten-

cil by the number of "perimeters" that must be communicated when the stencil is used. Following this

.

~ ~
v

Figure 2 Square partitions on grid

8

8 - 8 -
I

9-aml stencil

I
8 8 8

\I/
8 - 8 - 8 - 8 - 8

/ I\
8

13-p0ht stencil

Figure 3 Stencils requiring more than one perimeter communicated

idea, we define k(P, S) to be the number of perimeters communicated by partition P using stencil S.

Some values of k(P, S) are given below.

I Partition I Stencil I k(Partition. Stencil) I

L

Assuming that one iteration cannot begin until the last iteration has ended, it is reasonable to

model the iteration execution time (or cycle time) by

tcyclc = Gomp + ta (1)

where tcOv is the computation time of a single partition, ta is the data access/transfer and synchroniza-

tion time of a single partition. This model is essentially identical to that in [12] and [16] (although we

have coalesced communication and synchronization times). ta depends on the number of processon

used and the underlying communication architecture. We will develop specific foxms for fa as needed.

-7-

The computation time fCq depends on the stencil, the solution algorithm, the time to perform a float-

ing point operation, and the number of grid points in a partition ':
fconu, = E(S)*A.Tfi

Here E(S) is the number of floating point operations per grid point employed by the algorithm

(assumed to be constam), A is the number of grid points in a partition, and Tb is the time for a floating

point operation.

n2 With A grid points per partition the number of processors used is -. For a given architecture we
A

will optimize the number of processors by choosing the value of A which minimizes f+lc, subject to

.
Figure 4 Strip partitioning of domain

'We implicitly assume that the costs of floating point operations strongly dominate the cost of a grid point
update. Other overhead (such as address calculation and loop indexing) can be added to the model as needed.

I -8-

memory constraints and processor availability constraints. Other constraints concern the partition’s

shape. Square partitions only admit values of A which are perfect squares, thereby reducing substan-

tially the number of feasible domain decompositions (and hence freedom in choosing the number of

processors). Furthermore, it is possible to assign exactly equal work to each processor only if the

number of processors divides the number of grid points evenly. We will therefore relax the require-

ments that each partition have exactly the same number of points. and when using square partitions

relax the requirement that partitions be exactly square.

It is easy to decompose the domain into strips for P processors: if n = k.P + r with 0 5 r <p then

r processors receive p.1 + 1 contiguous rows, and the remaining processors each receive con-
P P

tiguous rows. As illustrated by figure 4, the number of communicating boundaries is the same as if all

the partitions have equal work. Square partitions raise harder problems. We will approximate square

partitions with nearly square rectangles which cover the domain in a nice way. The rectangles are

arranged in a grid fashion as illustrated in figure 5. The domain is first divided into strips as before;

then into rectangles by defining a border every mrh column. We require that rn divide n evenly, and

call these legal rectangles. For tractability our analysis treats partition execution and communication

costs as though the partitions are squares. However, empirical studies described below show that the

error introduced by this assumption is small.

For a given n it is easy to calculate the area of each legal rectangular partition. For each calcu-

lated area A we determine the legal rectangle with area A whose perimeter is minimized (several

different legal rectangles may have the same area). If its perimeter is within 5% of 4 f i (the perimeter

of a square with area A), we retain the rectangle and discard all other rectangles with area A. Otherwise

we discard all legal rectangles with area A, since none are sufficiently square-like. Each remaining

rectangle is a working rectangle. Not every area A will have a working rectangle with area A. Now

suppose we analytically determine that squares with area A optimize performance. We need to find a

~
~ ~

-9-

.

. . e
1
1 . 0 . . ,. . . .

.
. . e . . e o e . . . e
e e . e e e o e . e - ~~.

Figure 5 Rectangular partition of domain

working rectangle which closely approximates a square with area A. Figure 6a shows the relative

approximation e m r in area for a 256 x256 grid when we choose the working rectangle with area

closest to A; Figure 6b shows the rclative approximation e m r in perimeter. A ranges from 1024 to

16384 (every even value of A is plotted), reflecting decompositions using 4 tb 64 processors. We see

that the e m r introduced by this approximation is quite small, usually less than 3% for area and less

than 6% for perimeter. Similar results were obtained for 128x128, 512x512. and 1024x1024 size grids.

We can consequently optimize partition area as though partitions are exactly square with the assurance

that the costs obtained are not far different from costs that are truly achievable. We next consider this

optimization for various architecture types.

-10-

1024 16382

A

1024 16382

A

(a) Relative magnitude e m r in area (b) Relative magnitude e m r in penmeter

Figure 6 Bar graphs of approximation errors

4. Hypercube

Due to its commercial availability and interesting topological properties, a hypercube architecture

such as the Intel PSC[111 is a natural candidate for PDE solutions. The hypercube’s rich communica-

tion topology allows the mapping of adjacent strips (or square) partitions onto processors in such a

way that logically adjacent partitions are mapped onto physically adjacent processors (at least with

stencils having no diagonals). This propcrty is vcry important, because it implies that there is no con-

tention for communication resources bctwcen non-logically adjacent partitions. The cost of sending a

packet of data from one partition to another is independent of the total amount of communication on

the system. We may model the communication dclay of a V byte message from one processor to an

adjacent processor as

1 + P V
packetsize

tn = a. r

-11-

where a is the per packet transmission cost, and p is a startup cost. We assume that the problem size

is fixed at n2, and that if N processors are used, each partition gets n2/N points. Thus, as we allow N to

increase for a fixed value of n2, the number of points in a partition decreases, so that 110th the execu-

tion cost (re& and the communication/synchronization cost (tJ for the partition decreases. This

implies that twb as defined in equation (1) is a decreasing function of N over the interval [2, n2]. If

only one processor is used then no communication costs are suffered; if the one processor execution

cost is still gmter than the two processor cost, then using a l l processors is optimal. If the one proces-

sor cost is less than the two processor cost, but greater than the cost of using a l l processors, then using

all processors is again optimal. The last possibility is that the communication costs so high that the

one processor cost is less than the cost of using all processors. In this case, using only one processor

is optimal. Thus we see that is minimized by either spreading the computation out over as many

processors as possible, or by placing the whole domain into one processor. If memory limitations

prohibit the latter option, then the computation should be spread maximally.

Assume that the grid is spread across all available processors as squares, and consider the effect

of increasing both n2 and N in such a way that the number of grid points per processor remains con-

stant (say F points per processor) as n2 increases. This implies that the optimal cycle time is the con-

c stant C = E(S).F.Tfi + 8(r 4fi la + p>. The optimal speedup is then packetsize

linear in 2.

If the number of processors is fixed at N, the cycle time of a processor is then

E(S)-n2*Tfi + 8(r*ia + p).
N packetsize ‘cycle =

where V(n2) denotes the volume of a partition’s communication. V (2) = 2n for strips and

*his expression assumes that only one communication port can be active at a time in a processor, and that
the communication link is half duplex.

-12-

V(n2) = a for squares; it is easily checked that speedup for both squares and strips approaches N

as n2+.

The quick analysis above fails to consider the very important activity of convergence checking.

A convergence check requires that every updated grid point value be compared with its last value.

Depending on the convergence criterion employed, another iteration is called for if the updated solution

is too ”different” from the last estimate. Every partition determines whether its subgrid is converged

and produces either a convergence flag, or a number (e.g. sum of squared update differences over

subgrid) which must be disseminated throughout the entire network. For small stencils like 5-point,

the additional computation required to do a convergence check can be 50% of the grid update compu-

tation. Furthermore, communication during the dissemination stage is not local, and the delay due to

this stage increases in the number of processors used. Saltz, Naik, and Nicol examine this problem in

[13], and note that the communication cost for convergence checking is extremely high due to message

packaging and handling costs. They then give algorithms for scheduling convergence checks; measure-

ments taken on an Intel ipSC show that despite the potentially very high cost of convergence check-

ing, these algorithms reduce that cost to an insignificant amount. For the sizes of hypercubes currently

available, we may safely ignore convergence checking costs in hypercubes.

5. Grid Architectures

Parallel architectures have been designed with nearest neighbor communication, e.g. the Illiac IV

[5], and NASA’s Finite Element Machine (FEM)[l]. The observations made for hypercubes apply

equally well: the communication costs increase as the partition size increases, implying that the work

should be spread as evenly as possible or lumped onto one machine (which makes little sense on the

fore-mentioned machines). This type of machine often provides a global bus, and additional hardware

for functions such as convergence checking. Provided that such additional hardware exists, the com-

munication overhead of convergence checking does not appear to be as significant a concern as it is

-13-

with hypercubes (although the additional computational cost may still be significant).

Adams and Crockett [l l analyze a conjugate gradient code on the FEM. Each iteration of this

code requires every processor to send every other processor a number, and a processor adds together

a l l such numbers. Eventually adding more processon to a fixed size problem causes this communica-

tion and addition to dominate perfomance. The result is that increasing the number of processor past a

certain threshold increases the algorithm execution time. This highlights the fact that the monotonicity

we claim for hypercube and grid machines depends very much on the exclusively neareSt neighbor

communication pattern. In the next section we will see that in bus architectures the communication cost

can actually decrease in increasing partition size, making for a more interesting optimization problem.

6. Bus Architectures

Shared memory bus architectures are another important class of commercially available parallel

processors. Currently, several vendors offer a few tens of pmcessors on a common bus; we denote the

maximum number of pmcessors available by N. We suppose that the architecture supports local

memory and global memory, with global memory access being several times slower than local memory

access (several of the commercial machines do not support this model; they do support caches which,

if sufficiently large could be viewed as local memory).’ We will consider both synchronous and asyn-

chronous busses: a synchronous bus requires a processor requesting service to’ wait until that service is

completed; an asynchronous bus admits overlapping computation and data writes to the global memory.

We will see that in both cases contention for global memory via the bus can degrade performance to

the point where adding processors decreases execution time.

Reed et al. [12] also observe that a processor’s management of boundary values makes an impor-

tant difference in performance. Following their advice, we will assume that each processor copies its

neighbors’ boundary points into local memory at the start of an iteration, and writes its own boundary

points out to memory at the iteration’s end. In our experience on the FLEW2 [8], the cost of

-14-

transferring a word to or from common memory is best modeled (ignoring contention) as c + b, where

c is a fixed overhead cost due to address calculation and any overhead for accessing the bus, and b is

the bus cycle time. Because a l l communication is serialized by a bus, the relative importance of

different types of communication can be compared by their volume. The cost of communicating con-

vergence checking information on bus architectures is insignificant because it involves only one

number from each processor, and is hence ignored here.

6.1. Synchronous Bus

We model a synchronous bus and the contention it imposes by assuming that if P processors are

simultaneously requesting service, the effective delay Seen by each processor is c + bP time per float-

ing point number '. The transfer time fa depends on the partition and on P. For strips with area A. each

n2 partition has 2n boundary points, and - processors simultaneously require bus access. t, for strips is
A

consequently given by

The cycle time is then

4-n' . b. k(strip S)
A

f&! = E(S)-A-Tfi +
Note that the communication costs expressed by equation (2)

+ 4.nek(stripS).

are decreasing in

(2)

A, making (2) the sum

of a convex increasing tern and a convex decreasing term. Equation (2) is consequently a convex

function of A, so that the d minimizing (2) is easily found using calculus. If the d so determined falls

outside of bounds placed by memory or processor limitations then either the least or the largest admis-

sible value of A optimizes performance. d is given by

%or our problem, this assumption yields the same performance as if every processor were able to retain the
bus for its entire transmission. This follows since one processor will be last to receive the bus; its effective
communication time is c + bP per floating point number. This model also implicitly assumes that available pro-
cessors which are not participating in the computation do not significantly interfere with bus service.

-15-

It is important to note that d depends on most of the problem and architectural parameters assumed by

n2 the model (the overhead cost c does not affect A). When Â > - is not a multiple of n, we calculate N

A ̂
n

AI = n L- J, and Ab = A, + n. Between these two we choose the area yielding a smaller cycle time; the

convexity of (2) ensures that this time is optimal among strips. Substitution of A into (2) gives the

optimized cycle time when a&iuarily many processors are available,

Here we see that for sufficiently large n (or sufficiently small c) the computation time and the com-

munication time are essentially identical. Then this expression shows what leverage we have in

improving performance by improving hardware. For example, suppose that we have optimized perfor-

mance for one set of architectural parameters, and wish to increase processor or bus speed. If we dou-

ble the speed of the bus, the minimized cycle time decreases by a factor of l/G; the same improve-

ment is achieved by doubling the speed of a floating point operation. Since the original configuration

was optimized, these factors bound from above performance gain we can achieve by doubling pmces-

sor or bus speed on any subsequent partitioning of the domain. On the other hand if c is large relative

to expected problem sizes, then the overhead cost 4.nek(str ip ,S) will dominate the communication cost

so that any specd increase in the bus will not significantly improve performance; on the other hand,

decreasing c has a linear impact on f&!.

n2
A Fewer than N processors should be used if - c N. By (3), this is equivalent to

- N2b >-- E(''n k(srrip S) .
TfP 4 (4)

Inequality (4) gives a simple expression relating hardware characteristics to problem characteristics. If

-16-

n2 d e -, then the grid should be distributed across all N processors, giving a cycle time of
N

E(S).n2-Tfi
N egg = + rl.n-b.N.k(strip,S) + 4-n.c.k(stripsS).

Using this expression we calculate speedup

which is seen to approach N as n2+.

Square partitions are handled similarly. The communication time for a square partition with s

points per side is

cwa" = 8.s.k(square.S)(c + b) = 8.k(square,S)-b.- n2 + 8.s.c.k(stripsS),
S

a quantity which is always smaller than the corresponding cost for strips with 2 points. Also note that

the increasing or decreasing behavior of this cost in s is strongly dependent on the relative values of b

and c. The cycle time using squares with s points per side is

The importance of the relationship between c and b on optimal allocation of processors is illustrated by

considering necessary conditions under which fewer than all processors are optimally used.

Differentiating with respect to s and setting equal to zero yields the equation

E(S).Tfi.s3 + 4.k(square.S) [c.s2 - bn2] = 0.

Now suppose that cLy is minimized by 8 = -, 2 I P I N. Then P processors are employed, and n2
P

?his expression assumes that the number of boundary points a partition writes to global memory is the
Same as the number read in. This is not rigorously m e for any stencil which uses diagonals: our expression
does not count diagonal elements required by the 4 comer points. However, when the number of partition
points is large relative to the number of processors, this approximation is reasonable.

-17-

f is a mot of the equation above. Substituting this s" back into the equation above, we find that a

necessary condition on P is that clb 5 P. Recalling that bus architectunx typically have fewer than 30

processors, we see that this inequality tightly constrains values of b and c. Measurements taken on the

F'LEm2 suggest that cib = 1o00, implying that numerical problems run on that machine should use

all processors. Clue in allocating pmcessors is apparently needed more when c is less than b. Conse-

quently, we now consider the extreme case of c = O , and the optimal speedups that are achievable

under that assutnptim Note that any speedups so derived Serve as upper bounds on speedups gained

when c f 0.

If there is no overhead associated with accessing the bus, the optimal square partition size is

easily shown to be

The cycle time using 3 points per partition is

t&y = (E(S).Tfi)1'3(4.n2-b.k(square,S'))z3 + 2(E(S).Th)1"(4.n2-b.k(square,S))m,

which shows that the communication cost is twice that of the computation cost. This expression also

shows that we have more leverage by improving communication speed than we do computation speed:

doubling the speed of the bus gives an cycle time which is 63% of the original; doubling the speed of

a floating point computation gives an cycle time which is 79% of the original. As with strips, simple

algebra shows that fewer than N processors should be used if

Inequalities (4) and (6) show that a suip decomposition of a given problem will always call for

fewer (or equal) processors than a square decomposition (provided that k(square,S) = k(srrip,S)). The

minimal problem size which uses all N processors is found by treating (6) as an equality, and solving

-18-

4 -

for n. Figure! 7 plots the the log (base 2) of the minimal problem size n2 which gainfully uses all N

processors, as a function of N. For the parameter values considered we see that a 256x256 grid with

square partitions and a 5-point stencil should be solved on 1 to 14 processors; the same grid with a 9-

point stencil should use 1 to 22 processors. The higher computation to communication ratio of the 9-

point stencil allows more parallelism in computation for the same amount of communication.

For sufficiently large t? all N processors should be employed. The speedup achieved is

-
- -

I 1 1 1 1 1 I I I I

N*E(S)*Tfi
Speedup$"- =

2.b.N3%(stripS)
n E(s)*Tfi +

which also appmaches N as n2+. Comparison of this speedup with speedup for strips (equation (5)

with c = 0) shows the clear superiority of squares using realistic parameter values and large problems.

Supposing that E(s).Th = b, N = 16. k(srrip,S) = k(squureS) = 1, and n = 256 the speedup for strips is

l6 =4. while the speedup for squares is l6 = 10.6. Increasing the grid to
(1 + 512/n) (1 + 128/n)

4 8 12 16 20 24

5-point rknd

(a) Synchmnous, Strip
(b) Asynchronous, Strip
(c) Synchronous, Square

Parameter Value

1 x lo-'

log,(n')

24 111111111111
20

16

12

8

Figure 7 Minimal problem size as function of p.ocessors

-19-

1024x1024 raises the strip speedup to 10.6 and the square speedup to 14.2.

It is interesting (and straightforward) to calculate the optimal speedup when processors are not

limited to N. For strips we obtain

talR Speedup$@ = -
4

U2

This sjxxdup is proportional to (r ~ ~) ' ' ~ , a rather disheartening figure. With squares we fair only some-

what better. OpWal speedup is

a figure proportional to (n2)'". Figure 8 gives speedup curves and processor counts as a function of

log(n2) for the same problem parameters as addressed by figure 7. These unremarkable speedups sup-

port the common wisdom that bus architectures do not scale up. This does not negate the utility of

28

Speedup

(a) 5-point Stencil

-
-

40 -
-

Sp c c dup -
(Processors)

(a) Proceiiori (iquarei)
(b) Procerrom (atripr)
(c) Speedup (iquarer)
(d) Speedup (itripi)

I I I 1 1 1 1 -
12 14 I6 18 20

log,(.'I

(b) 9-point stencil

Figure 8 Speedup and processors required to achieve speedup

-20-

these machines: the speedups we calculated for a 16 processor machine on large grids were acceptable.

However, significantly larger speedups for this same problem are possible using a (larger) hypercube.

If minimizing the computation's execution time remains the prime objective then other architectures

should be considered.

6.2. Asynchronous Bus

Better performance can be expected if we are able to overlap communication and computation.

We next consider an architecture which allows asynchronous writes to global memory, but requires

processors to wait for completion of their read xequests. We then view an iteration as a reading phase,

followed by a computation phase. During the computation phase, we assume that a boundary value is

written to global memory as soon as it is updated. To maximize performance, we also assume that

boundary values are updated before any other points.

The time required to read the boundary points is exactly half of ta derived in the previous section.

During the computation phase, a boundary point is updated every E(S).Tfi units of time until all boun-

dary points have been updated. The time required to update all A points in a partition is E(S)-A.T- If

at this time the bus has managed to complete all requested writes, then the iteration is finished. Other-

wise, the iteration does not terminate until the bus services its backlog of boundary value writes. If a

backlog exists after all points are updated and P processors are in use, then clearly the bus is unable to

service P boundary value writes in time E(S)Tfp. Consequently, if a backlog exists, the bus has been

fully utilized during the entire computation phase. We may therefore write

tcycle = t r e d + maxIE(S).A*T' b.Btota1) (7)
where tred = t$2 and Bto,l is the total load (summed over all processors) offered to the bus during the

iteration.

For strips with area A, the cycle time is

-21-

.

1. f$V = 2*n3'b.k(sfr@sq + max(E(S).A.Tfp, 2.n3-b.k(strips)
A A

Again, this function is convex in A, with its minimum precisely where the arguments to the max func-

tion are equal:

The corresponding area given by equation (3) for a synchronous bus is exactly a factor of larger.

As befoxe, it is easy to show that fewer than N pmssors should be used if

N2.b , E(S).n -
Tfp 2k(strip,S) *

The optimal speedup is given by

Comparison with the synchronous bus speedup shows that the asynchronous bus speedup is a factor of

fi better.

The cycle time for a square partition with 2 points is

This is a convex function of s which is minimized when the arguments of the max function are equal:

This area is identical to that calculated for the synchronous bus case. The asynchronous bus optimal

speedup is

SpeedupS,x, =

which is 150% larger than the synchronous bus speedup.

The most interesting thing to note about our asynchronous bus results is their relationship to the

synchronous bus results. For both strip and square partitions we observe that optimal asynchronous bus

-22-

performance is a constant (albeit substantial) factor better than synchronous bus performance. Constant

factor improvement remains even if we relax the requirement that global memory reads are synchro-

nous (in this case we assume that half the grid points are updated in parallel with the initial read

requests, the other half in parallel with the boundary writes; this gives an additional 126% improve-

ment in speedup). The inevitable contention for communication resources, even when conducted in

parallel with computation and even when fixed ovehead is ignored, constrains the optimal speedup to

be 0((n2)1'4) for strips and 0((n2)'") for squares.

7. Switching Networks

An important class of parallel machines are those which communicate over a banyan type switch-

ing network (e.g. IBM RP3 [lo]. BBN Butterfly[2]). For a fixed sized network it is messy to do an

exact analysis of the communication delay su f fed by a partition as a function of processors used. To

simplify things we make the following assumptions:

(1) The number of global memory modules is equal to the number of processors;

(2) Each processor has local memory, and only boundary values are stored in global memory;

(3) The network switches are 2 by 2;

(4) The network is sufficiently fast so that we can ignore contention while boundary values are asyn-

chronously written to glabal memory.

Item (1) does not make any assumptions about the location of the global memory modules. They may

be resident in processors (as with the BBN Butterfly) or not. Assumption (2) is used because the study

in [12] shows that performance can be much better if local memory is employed. Assumption (3)

allows us to avoid switch contention under certain circumstances. Assumption (4) is reasonable, since

we may also schedule the times at which processors write to memory to further avoid contention. It is

convenient to assume that all of the boundary values a partition re& a~ stored in the same global

-23-

memory module, different from any other partition's. When a processor writes its boundary values, it

writes them to the different modules of processors which use those values. Then it is possible to

assign these modules to partitions in such a way that no contention at switches is ever incurred by any

boundary value read (presuming all partitions read concurrently). Under these assumptions the global

memory access time for a read is

r,, = 2.W1og2(~

where w is the speed of a switch, and the factor of two reflects two trips across the network. An itera-

tion consists of a phase of reading boundary values, followed by a computing phase. During the com-

puting phase the boundary points are written asynchronously back to global memory. The cycle time

for strip partitions with A points is given by

f&! = 4-nk(stripS).wlog2(N) + E(S).A.Tk

As a function of A, the cycle time is minimized when A is minimized, meaning that all available pro-

cessors are employed. Similarly, the cycle time for square partitions with s? points is

= ~ . s . w . ~ o ~ ~ (N) + E(.s)&T~.

This latter time is increasing in s, and so is minimized when s is minimized. Like the hypercube, we

see that problems mapped onto inter-connection networks ought to be lumped onto one processor, or

distributed as completely as possible across all processors .

We now allow the size of the parallel system to increase with increasing problem size. For square

partitions we fix F points per processor, making the cycle time

speedup, which is nearly linear in the problem size. Strip partitions force an increas-

ing number of points per processor, and have 0 [lo:n) - J optimal speedup.

-24-

These switching network speedups differ from the hypercube speedups only by a factor of

l/log(n); a factor which arises from the growing number of stages of the switching network as the

problem grows. For the size of problems treatable in the near future, this log factor will not be as

significant in determining performance as is switching network speed (for banyan networks), and mes-

sage packaging costs (for hypercubes and grids).

8. Conclusions

A number of factors influence the performance of an elliptic PDE solution on a parallel architec-

ture. Reed et id. [12] detail the interactions of stencil, partition, and architecture; we use their frame-

work to look at issues in processor allocation, and maximum possible speedup. For various types of

architectures we developed equations describing execution time; invariably these functions turned out

to be convex in the number of grid points assigned to a processor. This convexity shows that the best

assignment of grid points to processors either (1) uses as few processors as possible, (2) uses as many

processors as possible, or (3) there is a unique preferred assignment which does not use all available

processors, and is easily determined using calculus. We show that for any collection of model parame-

ter values, optimal performance on hypercubes, grid-like, and switching network types of architectures

is achieved either by spreading the problem grid across all processors, or by forcing the grid into as

few processors as possible. This result depends heavily on the fact that communication for the algo-

rithm studied is strictly nearest neighbor, existing studies [l] provide counter-examples for other com-

munication patterns. For our problem, both synchronous and asynchronous bus architectures allow for

optimal assignments which do not use all processors. However, we showed that in order for this situa-

tion to arise, the fixed overhead cost of communicating a word on the bus must be nearly as small as

the bus cycle time. Our formulas predict the smallest grid size which needs all available processors to

perform optimally; they also give upper bounds on the optimal speedup possible. We noted that bus

architectures can achieve acceptable speedup on reasonably sized grids, despite the potential for rela-

.

-25-

i

tively high contention for global memory. Also, by looking at optimized execution times on bus archi-

tectures, we identify the leverage on performance given by increasing p m s s o r or network communi-

cation speed.

We also examined the suitability of these architectures for solving increasingly large problems. It

is seen that for any of the fore-mentioned architectures with N fixed processors, the speedup

approaches N as the grid size increases. More interesting is the behavior of optimal speedup when we

let the architectu~e grow with the problem size. There we find that square partitions are smngly pre-

ferred over strip partitions; that hypercube speedups grow linearly in n2, switching network speedups

grow propodonally to n2/log(n), and that bus architecture speedups grow only as (n2)'", even if bus

access is completely asynchronous. Table I summarizes the optimal speedup in n2 as a function of

architecture (square partitions are assumed, one point per processor when appropriate).

Most of our results come as no surprise, they merely substantiate what is commonly thought

about each of these architectures. The implications of these results are simply that communication

volume and contention should be avoided as much as possible. Consider that when processors are no

constraint, strip partitions have a communication volume which is a square mot of the computation

Architecture Optimal Speedup

Hyper-cube
E(S)-n2,Tfi
8(P + a)

Synchronous Bus

Asynchronous Bus

E(S).n2.Tfi
16~wk(square,S)~log2(n) + E(S).Tb

Switching Network

Table I Summary of Optimal Speedups

-26-

volume. At best, we can expect speedup to grow in the square mot of the computation volume.

Allow contention proportional to total communication volume (summed over a l l partitions), and the

optimal speedup drops to the fourth root of n2. Even for squares, allowance of such contention restricts

speedup to a cube mot of n2. The clear implication is that contention eventually causes serious perfor-

mance degradation; our analysis shows how bad that degradation can be. It is also interesting to note

the rather limited leverage we have on improving bus architecture performance by increasing processor

or communication network speed: reducing the floating point time by l lk decreases optimal execution

time only by -p; a similar reduction in bus time reduces optimal execution time by - A. On the

other hand for strip partitions, reducing the fixed overhead cost of communication decreases optimal

execution time linearly.

One possible means for reducing contention is to use clever scheduling to access communication

resources. We have not yet explored this possibility. but suggest that it is important to do so given the

significance of the degradation our analysis predicts. Future effort will be devoted to verifying our

analysis empirically, and to investigate the fore-mentioned scheduling issues.

-27-

References

,

141

171

[91

L.M. Adams, T.W. Crockett, "Modeling Algorithm Execution Time on Processor Arrays",
Computer, vol. 17, July 1984, 38-44.
BurterPy Parallel Processor Overview, BBN Laboratories Incorp., 1985.

Z. Cvetanovic, 'The Effects of Problem Partitioning, Allocation, and Granularity on the
Performance of Multiple-Processor Systems", IEEE Trans. on Computers, C-36, April
1987,421-432.

G.C. Fox, S.W. Otto, "Algorithms for Concurrent Processors", Physics Today, Vol. 37, pp.
50-59, May 1984.

R.W. Hockney, C.R. Jesshope, Parallel Computers, Adam Hilger Ltd, Bristol, 1981.
B. Indurkhya, H.S. Stone, L. Xi-Cheng, "Optimal Partitioning of Randomly Generated Dis-
tributed Programs", IEEE Trans. on Software Eng., vol. SI-12, pp. 483495, March 1986.

D. Kamowitz, "SOR and MGR[v] Experiments on the Crystal Multicomputer", University
of Wisconsin Computer Science Technical Report 623, January 1986 (to appear in Parallel
Computing).
N. Matelan, "The F l e a 2 MultiComputer", Proc. 12th International Symposium on Com-
purer Architecture", Computer Society Press, Los Alamitos, CA. pp. 209-213, June 1985.

D.M. Nicol, "Optimal Partitioning of Random Programs Across Two Processors", ICASE
Report 86-53, August 1986 (submitted to IEEE Trans. on Software Eng).

G.F. Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J. Kleinfelder, K.P. McAuliffe,
E.a. Melton, V.A. Norton, J. Weiss, "The IBM Research Parallel Processor Prototype
(RP3): Introduction and Architecture", Proceedings of the I985 International Conference
on Parallel Processing, pp. 764-771, August 1985.

J. Rattner, "Concurrent Processing: A New Direction in Scientific Computing", Conference
Proceedings of the 1985 National Computer Conference, MIPS Press, Vol. 54, pp. 159-
166. 1985.

D.A. Reed, L.M. Adams, M.L. Patrick, "Stencils and Problem Partitionings: Their
Influence on the Performance of Multiple Processor Systems", ICASE Report 86-24, May
1986 (to appear in IEEE Trans. on Computers).

J.H. Saltz, V.K. Naik. D.M. Nicol, "Reduction of the Effects of the Communication
Delays in Scientific Algorithms on Message Passing M M D Architectures", SIAM Journal
of Scientific and Statistical Computing, Vol. 8, No. 1, January 1987, sl18-s134.

P.B. Schneck, D. Austin, S.L. Squires, J. Lehmann, D. Mizell, K. Wallgren, "Parallel Pro-
cessor Programs in the Federal Government", Computer, vol. 18, no. 6, pp. 43-55, June

-28-

1985.

H.S. Stone, High Performance Architecture, Addison-Wesley, New York, 1987.

D. Vrsalovic, E.F. Gehringer, Z.Z. Segall, D.P Siewiorek, "The Influence of Parallel
Decomposition Strategies on the Performance of Multiprocessor Systems", Proceedings of
the 12th International Symposium on Computer Architecture, ACM Sigarch Newsletter,
Vol 13, No. 3, pp. 396405, June 1985.

Standard Bibliographic Page

.. Report No. NASA CR-178282
ICASE ReDOrt NO. 87-7

2. Government Accession No.

1. Title and Subtitle

PROBLEM SIZE, PARALLEL ARCHITECTURE, AND
OPTIMAL SPEEDUP

~ ~~ ~~

19. Security Classif.(of this report)
Unclassified

'. Author(s)

David M. Nicol and Frank H. Willard

20. Security Classif.(of this page) 21. No. of Pages 22. Price
Unclassified 30 A0 3

#. erfor ing Org izatio Name and Addr s gnstytute ?or eomputer Appyications in Science

Mail Stop 132C, NASA Langley Research Center
HaIUDton. VA 23665-5225

and Engineering

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

15. Supplementary Notes

Submitted Langley Technical Monitor:
J. C. South

Final Report

3. Recipient's Catalog No.

5. Report Date

April 1987
6. Performing Organization Code

8. Performing Organization Report No.

87-7
10. Work Unit No.

11. Contract or Grant No.
NAS1-18107

13. Type of Report and Period Covered

Cn-tnr RppDrt
14. Sponsoring Agency Code

505-90-21-01

to the International
Conference on Parallel Processing

.6. Abstract

The communication and synchronization overhead Inherent in parallel
processing can lead to situations where adding processors to the solution method
actually increases execution time. Problem type, problem size, and architecture
type all affect the optimal number of processors to employ. In this paper, we
examine the numerical solution of an elliptic partial differetnial equation in
order to study the relationship between problem size and architecture. The
equation's domain is discretized into grid points which are divided into
partitions and mapped onto the individual processor memories. We analytically
quantify the relationships between grid size, stencil type, partitioning
strategy, processor execution time, and communication network type. In doing
so, we determine the optimal number of processors to assign to the solution (and
hence the optimal speedup), and identify (1) the smallest grid size which fully
benefits from using all available processors, (2) the leverage on performance
given by increasing processor speed o r communication network speed, (3) the
suitability of various architectures for large numerical problems.

n2

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement

parallel processing, processor
allocation, scientific computing

64 - Numerical Analysis
65 - Statistics and Probability

Unclassified - unlimited

For sale by the National Technical Information Service, Springfield, Virginia 22161
NASA Langley Form 63 (June 1985)

